- S23-¢/

Néé;16302 J6704 7

TOWARDS A DOCUMENT STRUCTURE EDITOR 7/
FOR
SOFTWARE REQUIRLMENTS ANALYSIS

Vincent J. Kowalski and ' -
Dr. Anthony A. Lckkos, University of Houston
Clear Lake

1. Introduction

Ot the six or seven phases of the software engineering iffe cycle, require-
ments analysis tends to be the least understood aqd the .Ieast. fqrmahzed. Cor-
respondingly. a scarcity of useful software tools exist which aid in the develop-
ment of user and system requirements. . .

In this paper we propose that requirements analysis should ;ulmmate
in & setof documents similar to those that usually accompany a delivered
softwarc product. We present the design of a software tool, the Document
Structure Editor, which facilitates the development of such documentation.

The requirements analysis phase of the software engineering life cycle
may de defined as the phase of software development in which the require-
ments of the user of a proposed software package are identified in a precise,
complete and logically coherent manner [6,7]. System constraints that resuft from
the target hardware s well as non-functional constraints such as budget, time,
and human recources must also be a part of a complete requirements analysis.

Two approaches to the problem of representing software requirements
that appear frequently in the literature are:

- natural (textual) language approach (10, 12]
- formal representation approach 3, 5, 9, 12, 19)

The first of these attempte to specify requirements in a manner that is easily
developed and understood by humans. It has the disadvantage that it 1.ay
give rise to logically incorrect sets of requirements. The second approach,
though it prevents logical inconsistencie«, has as its main drawhack tne fact
that n formal language must be used. i his is not necessarily a desirable situ-
ation since user requirements are best provided by users, not programmers.

Several software packages are spoken of as aids to the requirements
anglysis phase of the goftware engineering life cycle. A list of some of the
more welkknown of these packages is the foi wing:

- PSU/PSA [21]

- SREM [17, 18]
- SADT [15, 16]
- SSA (8]

-HOS {2, 13]

- Gist [1)

B.4.5.1

A close examination of the above tools has revealed that they are more suitably
classified as program design and structure tools. Though the design of code is
an essential phase in the software engineering life cycle, it is most appropriately
thought of as largely independent of requirements analysis.

Finally, the relative importance of good requirements analysis is the mo-
tivation for this work. Several studies have shown that the further a software pro-
ject is along in the software engineering life cycle, the more difficult and costly
i is to fix bugs, make changes, and add new requirements (4, 11). As we have
found, requirements are a difficult part of software development because of the trck
of automated tools that specifically aid requrements generation and maintenance

2. Document Structure Editor

2.1 Purpose and Goals

1 ne complete set of documentation that in general accompanies a de-
livered software package provides a very complete set of requirements for
that software package. Such documentation is, however, usually developed af-
ter the code for the package has been designed, implemented and tested. Ex-
amples of such documentation include:

- General Information Manual

- User Manual
- Lanquage (or Command} Reference
- Guide
- Tutorial

- System Requrements Document

The general goal of the Document Structure Editor is to provide an auto-
mated software tool for the development and subsequent management of doc-
uments such as those listed above. The most important feature of the DSE
s that once the general structure of such a document is determined it may be
stored as a Template for use in the generation of other similarly structured doc-
uments.

AR R ey ey o
. T I SR T A IR I A M A S A LN s i

2.2 System Overview

The Document Stucture Editor system is depicted in Figure 1. At the high-
est level of the system are the users. Next, the users’ interface to the system
consists of a set of commands supplied by DSE. This interface may be taylored
to a user's particular heeds and in essence each user has his or her own inter-
face to the DSE. Commands are interpreted at the next lower level in the system.
These commands invoke any combination of the lowest-level components of the
system. These lowest-level components are:

- Structure file

- DBMS

- Panel Primitives

- Text / Graphics Editor

The Structure File is the internal data structure that reflects the structure of a given
document. In most cases, this structure will be hierarchical. The DBMS s used
tor archival of document Templates and the data associated with particular goc-
uments. Panel Primitives are the software packages in the DSE which perform
the necessary mappings between the Structure File and a particutar CRT or
workstation. Finally, the Text / Graphics Editor is the means by which a user
enters data (text and digitized graphical objects) into the DSE.

2.3 Basic Terminology

Below are listed the definitions of terms defined in the Document Stucture
Editor. Several of the terms defined below are illustrated by Figure 2. Figure 2
is an example of a document or Template stored in the DSE. It should be noted
that the document is divided into parts, which are further divided into chapters,
which in turn are divided into sections. This structure is typical of most technical
writing and is easily developed and stored by the DSE.

Topic

Heading

Body

Level

Depth

Breadth

Template

The atomic unit of a document. A Topic consists of a
Heading and a Body. In actual documents, a Topic may
be thought of as a generic term for parts, chapters,
sections, and subsections.

This is a line of text that comes at the top of a Topic.
A Topic must have a Heading. In a real document,
a Heading may be a title, the name of a chapter or

the lke.

The Body is the content portion of a Topic. A Topic
does not need to have a Body (although the DSE
reserves space for a Body in every Topic).

The Level of a Template is how far up or down in a
document's hierarchical structure you are. For ex-
ample, the title of a textbook is its Oth Level, the parts
are its 1st Level, the chapters are its 2nd Level, the sec-
tions are its 3rd Level, the subsections are its 4th Level
and so on.

Given a Level, how many Levels are contained with-
init. i we tak about a document (or Template) that
has a title, chapters, and sections, the Depth of the
Level that coresponds to the title is 3 (you include
the Level you are looking at).

The Breadth of a Level is how may Topics are con-
tained within that Level. In other words, if Template
has five chapters and the Level being considered is
that which corresponds to chapters, that Level has
a Breadth of 5.

This is the sum total of all the Topics and their assigned
Levels-the total document under development.

B.4.5.4

Menu

A Menu is a special Command available to users of the
DSE. Menu is used to build selection menus and may
be invoked by a Profile or a User-Defined Command.

Profile Profiles are user-written files that consist of DSE com-
mands and system-related commands. A profile is ex-
ecuted when the DSE system is entered at (or enters)
some particular point. For instance, when a user logs
on the sytem, the User Profile is inmediately executed.

Command

~Line The typing-in of DSE or User Commands is performec

on a space on the terminal screen called the Command

LinaneCammandagniemddn thigfashianararetanades o
as Line Commands.

e e o el
- -

Breadth

Breadth

Template

the Level you are fooking at).

The Breadth of a Level ig how may Topics are con-
tvim o omFas th g e e i otk e woede A Tarsrings
The Breadth of a Level is how may Topics are con-
tained within that Level. In other words, it Template
has five chapters and the Level being considered is
that which corresponds to chapters, that Level has
a Breadth of 5.

This is the sum total of all the Topics and their assigned
Levels-the total document under development.

ORIGINAL PACE 'S
/4 OF POOR QUALITY
B.4.5.4 ‘

J

Menu

Profile

Command
-Line

’ Command
-User

Command
-General

Scroll

DSE

A Menu is a special Command available to users of the
DSE. Menu is used to build selection menus and may
be invoked by a Profile or a User-Defined Command.

Profiles are user-written files that consist of DSE com-
mands and system-related commands. A profile is ex-
ecuted when the DSE system is entered at (or enters)
some particular point. For instance, when a user logs
on the sytem, the User Profile is immediately executed.

The typing-in of DSE or User Commands is performec
on a space on the terminal screen called the Command
Line. Commands entered in this fashion are referred 1o
as Line Commands.

A User Defined Command is similar to a Profile, except
that a User Defined Command may be invoked anywhere
in the system a Command Line is available. The User
Command consists of DSE and host system commands
and is assigned a name by the user who writes it.

Commands are the means by which a user tells the
DSE what to do. Commands are the basis for the inter-
tace between the user and the DSE system.

Scrolling a Template is a feature of the DSE that allows
a user to view a Template as one continuous piece of text.

Software that converts DSE or User Commands into
instructions that the host computer understands.

Structure A file that contains the Level information and hence the
File structure of a Template. It is defined here for the purpose
of completeness.

Currency The DSE “knows" what template or topic or whatever you
might be referring to by keeping Current values for such
items. The currency is usually set using some Select
command.

Command A Key Command is an association (or mapping) between
-Key a short key sequence and a DSE or User Command. These
associations are defined in a Profile and the last Profile
executed takes precedence over any previous Profiles
with regards to these Key Command definitions.

3. Related Efforts

In many respects, storing the associated structure of a given document
s the logical next step for word processing software packages. Several com-
mercial packages have structure editing capabilities. These packages gen-
erally fall into one of two categories:

- Automatic Indexers
- Outliners

Automatic indexing software usually is available as an option to many popular
word processors. Outliners, on the other hand, have outlining of documents as
their primary purpose with limted word processing capabilties. Such packages
run on microcomputers exclusively. In addition, the integration of the compo-
nents of these packages s questionable [20].

B.4.5.,

USER 1 o o o USIER I
D E-E71L NED) D E-Fr N E-D) e @ O D E-Ezi N E-D)

N N-TER /A G-E] I N-T-E-R FJAG-E] HNT-EREJACE]

DSE - SUPPLIED

COMMAND LANGUAGE

f

COMMAND LANGUAGE |
INTERPRETER D
r Y, :
D '

STRUCT \ TEXT/GRAPHICS
FILE | \ EDITOR
\ 7
| DBMS) PANEL !
\
\, PRIMITIVES e
' "'/,_,./")
Figure 1.
B.4.5.7

NN NS N

U E-E]

g‘s\\%g'-\

TOPIC
HEADING
BODY
t LEPEL 8
TSR T e
HEADING HEADING HEADING
BODY BODY BODY
AN N
I e ~.. LEDEL 1
TORIC TOrICINTOF CRNETO i CONRT. T, CRERTO R 1CJT O F1C
[HEADING | [HEADING lEIADEG ING| HEADING &ZADIHG [HEADING gmmmc
BODY BODY BODY BODY BODY BODY BODY BODY

v F N e

™ L 7%

“ NN

|
H H H H H H H H H H H H :
B B R] B B B B B B B B B B
LEVEL 3

Figure 2.

B.4.5. 8

% References

(1)
(2]
(3]

f10]
[11]
[12]
[13]

(14]

[15)
[16]
(17]
(18]
[19]

(20]
(21]

Balzer, R., Gist Final Repont, Information Sciences Institute, University of
Souther Calrforma Feb. 1981.]

Bartas, J., "Higher-order computing generates high order business for
Cambridge Company,” Mass High Tech, Jul. 23, 1584.

Bell, T, etal.: “An Extendable Approach to Computer-Aided Software
Requrements Engineering,"Trans. Software Eng., Jan. 1977.

Booch, G., Software Engineering With Ada, Benjamin/Cummings Publish-
ing Co., Menlo Park, California, 1983. ‘
Borgida, A., and Greenspan, S., "Knowledge Representation as the Basis
for Requirements Specifications,” |IEEE Computer, Apr. 1985.

Fairley, R., Software Engineering Concepts, McGraw-Hill Publishing Co.,
New York, 1985.

Freeman, P., “Requirements Analysis and Specification: The First Step,”
Advances in Computer Technology, Aug. 1980.

Gane C., and Sarson, T., Structured Systems Analysis: Tools and
Techniques, Prentice-Hall, Englewood Cliffs, N.J., 1979.

Greenspan, S., et al., "Capturing More World Knowledge in the
Requirements Specification,” IEEE Proceedings cf the Sixth International
Conference on Software Engineering, 1982.

Heninger, K, “Specifying Software Requirements for Complex Systems
New Techniques and Therr Application,” IEEE Transactions on Software
Engineering, Jan. 1986.

Jones, C., Programmer Productivity, McGraw-Hill, New York, 1986.
Levene, A., and Mullery, G., “An Investigation of Requirements Specification
Languages: Theory and Practice,” IEEE Computer, May 1982.

Martin, J., System Design From Provably Correct Constructs, McGraw-
Hill. New York, 1985

Robinson, L., et al., “A Formal Methodology for the Design of Operating
System Software.” Current Trends in Programming Methodology. vol |,
Prentice-Hall, Englewood Cliffs, N.J., 1977

Ross. D.. "Structured Analysis (SA): A Language for Communicating
ldeas," IEEE Transactions on Software Engineering, Jan. 1977

Ross. D. "Applications and Extensions of SADT." IEEE Computer. Apr .
1985

Rzepka, W_, et al, "Requirements Engineering Environments: Software
Tools for Modeling User Needs,” IEEE Computer, Apr. 1985

Scheffer, P., etal, "A Case Study of SREM," IEEE Computer, Apr 1985
Shaw, A, "Software Specification Languages Based on Regular
Expressions.” in Software Development Tools. Springer-Verlag. Berlin.
1980.

Spezzano, C , "Unconventional Outliners”, PC World, Mar. 1386
Teichrow, D, et al, "PSL/PSA: A Computer Aided Technique for Structured
Documentation and Analysis of Information Processing Systems.” Trans.
Software Engineering, Jan. 1977

B.4.5.9

